
Omega Regular Languages and Büchi Automata

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR

PALLAB DASGUPTA, 
FNAE, FASc,
A K Singh Distinguished Professor in AI,
Dept of Computer Science & Engineering
Indian Institute of Technology Kharagpur 
Email: pallab@cse.iitkgp.ac.in 
Web: http://cse.iitkgp.ac.in/~pallab

CS60030 FORMAL SYSTEMS 



• Let 𝚺𝚺 be an alphabet with 𝐀𝐀 ∈ 𝚺𝚺

• Regular expressions over 𝚺𝚺 have syntax:

• The semantics of regular expression 𝑬𝑬 is a language 𝑳𝑳 𝑬𝑬 ⊆ 𝚺𝚺∗:

Regular expressions
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𝑬𝑬: : = 𝝓𝝓 | 𝜺𝜺 | 𝑨𝑨 𝑬𝑬 + 𝑬𝑬 ′ 𝑬𝑬 . 𝑬𝑬 ′ | 𝑬𝑬 ∗

𝑳𝑳 𝝓𝝓 = 𝝓𝝓∗ 𝑳𝑳 𝜺𝜺 = 𝜺𝜺 𝑳𝑳 𝑨𝑨 = 𝑨𝑨

𝑳𝑳 𝑬𝑬 + 𝑬𝑬𝑬 = 𝑳𝑳 𝑬𝑬 ∪ 𝑳𝑳(𝑬𝑬′) 𝑳𝑳 𝑬𝑬.𝑬𝑬𝑬 = 𝑳𝑳 𝑬𝑬 .𝑳𝑳(𝑬𝑬′) 𝑳𝑳 𝑬𝑬∗ = 𝑳𝑳 𝑬𝑬 ∗



• Regular expressions denote languages of finite words

• ω-Regular expressions denote languages of infinite words

• An ω-regular expression 𝑮𝑮 over 𝚺𝚺 has the form:

• where 𝑬𝑬𝒊𝒊, 𝑭𝑭𝒊𝒊 are regular expressions over 𝚺𝚺 with 𝜺𝜺 ∉ 𝑳𝑳(𝑭𝑭𝒊𝒊)

• Some examples: 

• (𝑨𝑨 + 𝑩𝑩)∗ . 𝑩𝑩𝝎𝝎

• (𝑩𝑩∗ . 𝑨𝑨)𝝎𝝎

• 𝑨𝑨∗ . 𝑩𝑩𝝎𝝎 + 𝑨𝑨𝝎𝝎

Syntax of ω-regular expressions
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𝑮𝑮 = 𝑬𝑬𝟏𝟏.𝑭𝑭𝟏𝟏𝝎𝝎 + … + 𝑬𝑬𝒏𝒏.𝑭𝑭𝒏𝒏𝝎𝝎 for  n>0



• For 𝐿𝐿 ⊆ 𝛴𝛴∗ let  𝐿𝐿𝜔𝜔 = 𝑤𝑤1𝑤𝑤2𝑤𝑤3 … ∀𝑖𝑖 ≥ 0. 𝑤𝑤𝑖𝑖 ∈ 𝐿𝐿}

• Let ω-regular expression 𝐺𝐺 = 𝐸𝐸1.𝐹𝐹1𝜔𝜔 + … + 𝐸𝐸𝑛𝑛.𝐹𝐹𝑛𝑛𝜔𝜔

• The semantics of 𝑮𝑮 is the language 𝐿𝐿𝜔𝜔 𝐺𝐺 ⊆ 𝛴𝛴𝜔𝜔 :

• G1 and G2 are equivalent, denoted 𝐺𝐺1 ≡ 𝐺𝐺2 , if  𝐿𝐿𝜔𝜔 𝐺𝐺1 = 𝐿𝐿𝜔𝜔 𝐺𝐺2

Semantics of ω-regular expressions
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𝑳𝑳𝝎𝝎 𝑮𝑮 = 𝑳𝑳 𝑬𝑬𝟏𝟏 .𝑳𝑳 𝑭𝑭𝟏𝟏 𝝎𝝎 ∪ . . . ∪ 𝑳𝑳(𝑬𝑬𝒏𝒏).𝑳𝑳(𝑭𝑭𝒏𝒏)𝝎𝝎



• 𝐿𝐿 is ω-regular if 𝐿𝐿 = 𝐿𝐿𝜔𝜔 𝐺𝐺 for some ω-regular expression 𝐺𝐺

• Examples over 𝛴𝛴 = {𝐴𝐴,𝐵𝐵}:

• Language of all words with infinitely many As: (𝐵𝐵∗ . 𝐴𝐴 )𝜔𝜔

• Language of all words with finitely many As: (𝐴𝐴 + 𝐵𝐵)∗ . 𝐵𝐵𝜔𝜔

• The empty language: ∅𝜔𝜔

• ω-Regular languages are closed under ∪ , ∩ and complementation

10

ω-Regular languages



• Definition:

• LT property P over AP is ω-Regular if P is an ω-regular language over the alphabet 2AP

• Or, equivalently:

• LT property P over AP is ω-Regular if P is a language accepted by a nondeterministic Büchi automaton 
over 2AP

ω-Regular safety properties
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• NFA (and DFA) are incapable of accepting infinite words

• Automata on infinite words

• Suited for accepting ω-regular languages
• We consider nondeterministic Büchi automata (NBA)

• Accepting runs have to “check” the entire input word ⇒ are infinite

• acceptance criteria for infinite runs are needed

• NBA are like NFA, but have a distinct acceptance criterion

• one of the accept states must be visited infinitely often

Nondeterministic Büchi automata
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A nondeterministic Büchi automaton (NBA) 𝑨𝑨 is a tuple (Q, Σ, δ, Q0, F ) where:

• Q is a finite set of states with Q0 ⊆Q a set of initial states

• Σ is an alphabet

• δ : Q ×Σ → 2Q  is a transition function

• F ⊆Q is a set of accept (or: final) states

Büchi Automata

15



• NBA𝑨𝑨 =  ( Q ,  𝜮𝜮,  𝜹𝜹,  𝑸𝑸 𝟎𝟎 ,  F )  and word 𝜎𝜎 = A0 A1 A2 . . . ∈ 𝜮𝜮𝝎𝝎

• A run for 𝜎𝜎 in 𝑨𝑨 is an infinite sequence q0 q1 q2 . . . such that:

• 𝒒𝒒𝟎𝟎 ∈ 𝑸𝑸𝟎𝟎 and 𝒒𝒒𝒊𝒊
𝑨𝑨𝒊𝒊+𝟏𝟏 𝒒𝒒𝒊𝒊+𝟏𝟏 for all 𝒊𝒊 ≥ 𝟎𝟎

• Run q0 q1 q2 … is accepting if 𝒒𝒒𝒊𝒊 ∈ 𝑭𝑭 for infinitely many i.

• 𝜎𝜎 ∈ 𝛴𝛴𝜔𝜔 is accepted by 𝐴𝐴 if there exists an accepting run for 𝜎𝜎

• The accepted language of 𝐴𝐴 :
𝐿𝐿𝜔𝜔 𝐴𝐴 = 𝜎𝜎 ∈ 𝛴𝛴𝜔𝜔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎 𝑡𝑡𝑟𝑟𝑎𝑎 𝑓𝑓𝑓𝑓𝑡𝑡 𝜎𝜎 𝑖𝑖𝑎𝑎 𝐴𝐴}

• NBA 𝐴𝐴 and 𝐴𝐴𝑬 are equivalent if 𝐿𝐿𝜔𝜔 𝐴𝐴 = 𝐿𝐿𝜔𝜔 𝐴𝐴𝑬
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Language of an NBA



An Example NBA

• If we treat M as a NFA, then L(M) = (A + AB)*A

• If we treat M as a NBA, then L(M) =  (A*AB)ω

• Can you write some words which are accepted and some words which are not accepted?  

16

A
A

B

M



NBA versus NFA
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finite equivalence ⇏ ω-equivalence

𝐿𝐿 𝐴𝐴 = 𝐿𝐿 (𝐴𝐴 𝑬 ) , but 𝐿𝐿𝜔𝜔 𝐴𝐴 ≠ 𝐿𝐿𝜔𝜔 𝐴𝐴𝑬

ω-equivalence ⇏ finite equivalence

𝐿𝐿𝜔𝜔 𝐴𝐴 = 𝐿𝐿𝜔𝜔 𝐴𝐴𝑬 ,but 𝐿𝐿 𝐴𝐴 ≠ 𝐿𝐿 (𝐴𝐴 𝑬 )

a

a

a

a

a

a

a

a



NBA and ω-regular languages
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This means:
(1) any ω-regular language is recognized by an NBA
(2) for any NBA A , the language L ω(A ) is ω-regular

The class of languages accepted by NBA 
agrees with the class of ω-regular languages.



• How to construct an NBA for the ω-regular expression: 𝐺𝐺 = 𝐸𝐸1.𝐹𝐹1𝜔𝜔 + … + 𝐸𝐸𝑛𝑛.𝐹𝐹𝑛𝑛𝜔𝜔 ?

• where 𝑬𝑬𝒊𝒊, 𝑭𝑭𝒊𝒊 are regular expressions over 𝚺𝚺 with 𝜺𝜺 ∉ 𝑳𝑳 𝑭𝑭𝒊𝒊

• Use operators on NBA, mimicking operators on ω-regular expressions:

• for NBA 𝐴𝐴1 and 𝐴𝐴2 there is an NBA accepting 𝐿𝐿𝜔𝜔 𝐴𝐴1 ∪ 𝐿𝐿𝜔𝜔 𝐴𝐴2

• for any regular language 𝐿𝐿 with 𝜀𝜀 ∉ 𝐿𝐿 there is an NBA accepting 𝐿𝐿𝜔𝜔

• for regular language 𝐿𝐿 and NBA 𝐴𝐴𝑬 there is an NBA accepting 𝐿𝐿. 𝐿𝐿𝜔𝜔 𝐴𝐴𝑬

• We will discuss these three operators in detail

For any ω-regular language there is an NBA

22



Union of NBAs
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For NBA 𝑨𝑨𝟏𝟏 and 𝑨𝑨𝟐𝟐 (both over the alphabet 𝜮𝜮)
there exists an NBA 𝑨𝑨 such that:

𝑳𝑳𝝎𝝎 𝑨𝑨 = 𝑳𝑳𝝎𝝎 𝑨𝑨𝟏𝟏 ∪ 𝑳𝑳𝝎𝝎 𝑨𝑨𝟐𝟐 and 𝐀𝐀 = 𝐎𝐎( 𝑨𝑨𝟏𝟏 + 𝑨𝑨𝟐𝟐 )



• Let A =  ( Q ,  𝜮𝜮,  𝜹𝜹,  Q 0 ,  F )  be an NFA with 𝜀𝜀 ∉ 𝐿𝐿(A).
• Assume no initial state in A has incoming transitions and 𝑸𝑸𝟎𝟎 ∩ 𝑭𝑭 = ∅

• Otherwise introduce a new initial state 𝒒𝒒𝒏𝒏𝒏𝒏𝒏𝒏 ∉ 𝑭𝑭

• Let 𝒒𝒒𝒏𝒏𝒏𝒏𝒏𝒏
A

𝒒𝒒 iff 𝒒𝒒𝟎𝟎 →
A
𝒒𝒒 for some 𝒒𝒒𝟎𝟎 ∈ 𝑸𝑸𝟎𝟎

• Keep all transitions in A

• Construct an NBA A𝑬 =  (𝑸𝑸 ,  𝜮𝜮,  𝜹𝜹𝑬,  𝑸𝑸 𝑬 𝟎𝟎 ,  𝑭𝑭 𝑬 )  as follows

• If 𝒒𝒒
A

𝒒𝒒𝑬 ∈ 𝑭𝑭 then add 𝒒𝒒→
A
𝒒𝒒𝟎𝟎 for any 𝒒𝒒𝟎𝟎 ∈ 𝑸𝑸𝟎𝟎

• Keep all transitions in A
• 𝑸𝑸𝑬𝟎𝟎 = 𝑸𝑸𝟎𝟎 and 𝐅𝐅′ = 𝑸𝑸𝟎𝟎

Definition of ω-operator for NFA
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q 1q 0
B

A

qnew q0

B
q1

A

A B

qnew q0

B

A

A q1

B

B

B

From A*B to (A*B)ω



• Let 𝜎𝜎 ∈𝐿𝐿𝜔𝜔(A 𝑬) and q0 q1 q2 … be an accepting run for 𝜎𝜎 in A ′

• Hence, 𝒒𝒒𝒊𝒊 ∈ 𝑭𝑭′ = 𝑸𝑸𝟎𝟎 for infinitely many indices i
• Let 𝒊𝒊𝟎𝟎 = 𝟎𝟎 < 𝒊𝒊𝟏𝟏 < 𝒊𝒊𝟐𝟐 < … such that 𝒒𝒒𝒊𝒊𝒌𝒌 ∈ 𝑭𝑭𝑬 and 𝒒𝒒𝒋𝒋 ∉ 𝑭𝑭𝑬 for 𝒋𝒋 ≠ 𝒊𝒊𝒌𝒌

• Divide 𝜎𝜎 into infinitely many nonempty finite sub-words 𝒏𝒏𝒊𝒊 ∈ 𝚺𝚺∗:

𝜎𝜎 = 𝒏𝒏𝟏𝟏𝒏𝒏𝟐𝟐𝒏𝒏𝟑𝟑… such that 𝒒𝒒𝒊𝒊𝒌𝒌 ∈ 𝜹𝜹
′∗(𝒒𝒒𝒊𝒊𝒌𝒌−𝟏𝟏 ,𝒏𝒏𝒌𝒌) for all 𝒌𝒌 > 𝟎𝟎

• It follows 𝜹𝜹∗ 𝒒𝒒𝒊𝒊𝒌𝒌−𝟏𝟏 ,𝒏𝒏𝒌𝒌 ∩ 𝑭𝑭 ≠ 𝝓𝝓

• 𝒒𝒒𝒊𝒊𝒌𝒌 ∈ 𝑸𝑸𝟎𝟎 and 𝒒𝒒𝒊𝒊𝒌𝒌 ∈ 𝑸𝑸𝟎𝟎 has no incoming transitions, thus 𝒒𝒒𝒊𝒊𝒌𝒌 ∈ 𝑭𝑭

• Thus: 𝒏𝒏𝒌𝒌 ∈ 𝑳𝑳(A) for any 𝑘𝑘 > 0,  and hence 𝜎𝜎 ∈ 𝑳𝑳(A) 𝜔𝜔

26

Proof of 𝑳𝑳𝜔𝜔 A′ ⊆ 𝑳𝑳(A)𝜔𝜔



Proof of 𝑳𝑳𝜔𝜔 A′ ⊇ 𝑳𝑳(A)𝜔𝜔

• Let 𝜎𝜎 = 𝒏𝒏𝟏𝟏𝒏𝒏𝟐𝟐𝒏𝒏𝟑𝟑… such that 𝒏𝒏𝒌𝒌 ∈ 𝑳𝑳(A) for all 𝑘𝑘 > 0

• That is, 𝜎𝜎 ∈ 𝑳𝑳(A) 𝜔𝜔

• Let 𝒒𝒒𝟎𝟎𝒌𝒌 𝒒𝒒𝟏𝟏𝒌𝒌 𝒒𝒒𝟐𝟐𝒌𝒌 …𝒒𝒒𝒏𝒏𝒌𝒌
𝒌𝒌 be an accepting run for𝒏𝒏𝒌𝒌 inA

• By definition ofA𝑬, we have 𝒒𝒒𝟎𝟎𝒌𝒌+𝟏𝟏 ∈ 𝜹𝜹′∗(𝒒𝒒𝟎𝟎𝒌𝒌,𝒏𝒏𝒌𝒌)for all 𝒌𝒌 > 𝟎𝟎

𝒒𝒒𝟎𝟎𝟏𝟏 …𝒒𝒒𝒏𝒏𝟏𝟏−𝟏𝟏
𝟏𝟏 𝒒𝒒𝟎𝟎𝟐𝟐 …𝒒𝒒𝒏𝒏𝟐𝟐−𝟏𝟏

𝟐𝟐 𝒒𝒒𝟎𝟎𝟑𝟑 …𝒒𝒒𝒏𝒏𝟑𝟑−𝟏𝟏
𝟑𝟑 … is an accepting run for 𝜎𝜎 inA𝑬

• Hence 𝜎𝜎 ∈ 𝑳𝑳𝜔𝜔(A)

27



Concatenating an NFA and an NBA

29

For NFA 𝑨𝑨 and NBA 𝑨𝑨𝑬 (both over the alphabet 𝜮𝜮)
there exists an NBA 𝑨𝑨𝑬𝑬 with:

𝑳𝑳𝝎𝝎 𝑨𝑨𝑬𝑬 = 𝑳𝑳 𝑨𝑨 .𝑳𝑳𝝎𝝎 𝑨𝑨𝑬 and 𝐀𝐀𝑬𝑬 = 𝐎𝐎( 𝑨𝑨 + 𝑨𝑨𝑬 )



Interesting questions for NBA

• How to determine whether a NBA is empty?

• What is a deterministic BA?

• NBAs are more powerful than DBAs. The language (A+B)*Bω is accepted by a NBA but not accepted by any 
DBA (why?)

• Non-determinism is useful:

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 19

q0 q1 q2a ¬ a

true a true

Let AP = {a }, i.e., 2AP = {A, B} where A = { } and B = {a}

The language: eventually forever a may be represented as (A + B) ∗Bω = ({ } + {a}) ∗{a}ω



Generalized Büchi automata

• NBA are as expressive as ω-regular languages

• Variants of NBA exist that are equally expressive

– Muller, Rabin, and Streett automata
– generalized Büchi automata (GNBA)

• GNBA are like NBA, but have a distinct acceptance criterion

– a GNBA requires to visit several sets F 1, . . . , F k (k ≥ 0) infinitely often
– for k = 0, all runs are accepting
– for k = 1 this boils down to an NBA

• GNBA are useful to relate temporal logic and automata

– but they are equally expressive as NBA

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 20



Generalized Büchi automata

A generalized NBA (GNBA) G is a tuple (Q, Σ, δ, Q0, F ) where:

• Q is a finite set of states with Q0 ⊆ Q a set of initial states

• Σ is an alphabet

• δ : Q × Σ → 2Q is a transition function

• F = { F1, . . . , Fk } is a (possibly empty) subset of 2Q

The size of G, denoted | G |, is the number of states and transitions in G :

| G | =  |Q| + ∑q∈Q∑A∈Σ | δ(q, A) |

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 21



Language of a GNBA

• GNBA  G  =  ( Q ,  𝜮𝜮,  𝜹𝜹,  𝑸𝑸 𝟎𝟎 , F)  and word 𝜎𝜎 = A0 A1 A2 . . . ∈ 𝜮𝜮𝝎𝝎

• A run for 𝜎𝜎 inG  is an infinite sequence q0 q1 q2 . . . such that:

• 𝒒𝒒𝟎𝟎 ∈ 𝑸𝑸𝟎𝟎 and 𝒒𝒒𝒊𝒊 →
𝑨𝑨𝒊𝒊 𝒒𝒒𝒊𝒊+𝟏𝟏 for all 𝒊𝒊 ≥ 𝟎𝟎

• Run q0 q1 q2 … is accepting if for all F ∈ F for infinitely many i.

• 𝜎𝜎 ∈ 𝛴𝛴𝜔𝜔 is accepted by G  if there exists an accepting run for 𝜎𝜎

• The accepted language of G:
𝐿𝐿𝜔𝜔 G = 𝜎𝜎 ∈ 𝛴𝛴𝜔𝜔 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑡𝑡𝑒𝑒𝑖𝑖𝑒𝑒𝑡𝑡𝑒𝑒 𝑎𝑎𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑎𝑎𝑎𝑎 𝑡𝑡𝑟𝑟𝑎𝑎 𝑓𝑓𝑓𝑓𝑡𝑡 𝜎𝜎 𝑖𝑖𝑎𝑎 G}

• GNBA  G  and G 𝑬 are equivalent if 𝐿𝐿𝜔𝜔 G = 𝐿𝐿𝜔𝜔 G 𝑬

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 22



Example

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 23

q0q1 q2

true

crit2

truecrit1

true

A GNBA for the property ”both processes are infinitely often in their critical section”
F = {{q1 }, {q2 }}



From GNBA to NBA

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 24

For any GNBA G there exists an NBA A with:
L ω(G) = L ω(A ) and | A | = O(|G |·|F|)

where F denotes the set of acceptance sets in G



Example

INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR 25

(q0, 2)

(q0, 1)(q1, 1) (q2, 1)

true

crit2

true 
true 
crit2

crit1

(q1, 2) (q2, 2)

true 

true

crit1 true



Facts about Büchi automata

• They are as expressive as ω-regular languages

• They are closed under various operations and also under ∩

• Nondeterministic BA are more expressive than deterministic BA

• Emptiness check = check for reachable recurrent accept state

– this can be done in O ( |  A | )
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